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BACKGROUND 

Computers are widely used in all sectors of our society, performing a variety of func-
tions with the application software running on them. As a result, the market for soft-
ware engineers is booming. There is a significant gap between the demand and supply, 
especially for graduates with software engineering education.

Many people do not know the scope and usefulness of software engineering, and 
the discipline is often misunderstood. Many media outlets deem software engineering 
as writing Java programs. Some students think that software engineering includes 
everything related to software. Others think that software engineering is drawing 
UML diagrams, as the following story illustrates. Years ago, after the first class of a 
software engineering course, a student told me, “professor, you know that this will be 
an easy course for me because we’ve drawn lots of UML diagrams before.” At the end 
of the semester, the student came to me again and said, “professor, I want to tell you 
that we worked very hard, but we learned a lot about OO design. It is not just drawing 
UML diagrams.” So what is software engineering? As a discipline, it encompasses 
research, education, and application of engineering processes, methodologies, quality  
assurance, and project management to significantly increase software productivity 
and software quality while reducing software cost and time to market. A software pro-
cess describes the phases and what should be done in each phase. It does not specify 
(in detail) how to perform the activities in each phase. A modeling language, such 
as UML, defines the notations, syntax, and semantics for communicating and docu-
menting analysis and design ideas. UML and the Unified Process (UP) are good and 
necessary but not sufficient. This is because how to produce the analysis and design 
ideas required to draw meaningful UML diagrams is missing. 

MOTIVATION 

To fill the gap mentioned above, we need a methodology or a “cook-book.” Unlike a 
process, a methodology is a detailed description of the steps and procedures or how to 
carry out the activities to the extent that a beginner can follow to produce and deploy 
the desired software system. Without a methodology, a beginning software engineer 
would have to spend years of on-the-job training to learn design, implementation, and 
testing skills. 

This book is also motivated by emerging interests in agile processes, design pat-
terns, and test-driven development (TDD). Agile processes emphasize teamwork, de-
sign for change, rapid deployment of small increments of the software system, and 
joint development with the customer and users. Design patterns are effective design 

P r e f a c e
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solutions to common design problems. They promote software reuse and improve 
team communication. Patterns also empower less-experienced software engineers to 
produce high-quality software because patterns encode software design principles. 
TDD advocates testable software, and requires test scripts to be produced before the 
implementation so that the latter can be tested immediately and frequently. 

As an analogy, consider the development of an amusement park. The overall pro-
cess includes the following phases: planning, public approval, analysis and design, fi-
nancing, construction drawings, construction, procurement of equipment, installation of 
equipment, preopening, and grand opening. However, knowing the overall process is not 
enough. The development team must know how to perform the activities of the phases. 
For example, the planning activities include development of initial concept, feasibility 
study, and master plan generation. The theme park team must know how to perform these 
activities. The analysis and design activities include “requirements acquisition” from stake-
holders, site investigation, design of park layout, design of theming for different areas of the 
park, creating models to study the layout design and theming, and producing the master 
design. Again, the theme park team must know how to perform these activities to produce 
the master design. Unlike a process that describes the phases of activities, a methodology 
details the steps and procedures or how to perform the activities. 

The development of an amusement park is a multiyear project and costs billions 
of dollars. The investor wants the park to generate revenue as early as possible, but 
with the above process, the investor has to wait until the entire park is completed. 
Once the master design is finalized, it cannot be modified easily due to the restrictions 
imposed by the conventional process. If the park does not meet the expectations of the 
stakeholders, then changes are costly once the park is completed. 

Agile processes are aimed to solve these problems. With an agile process, a list 
of preliminary theme park requirements is acquired quickly and allowed to evolve 
during the development process. The amusement and entertainment facilities are 
then derived from the requirements and carefully grouped into clusters of facilities. 
A plan  to develop and deploy the clusters in relatively short periods of time is pro-
duced, that is, rapid deployment of small increments. Thus, instead of a finalized 
master design, the development process designs and deploys one cluster at a time. As 
the clusters of facilities are deployed and operational, feedback is sought and changes 
to the requirements, the development plan, budget, and schedule are worked out with 
the stakeholders—that is, joint development. In addition, the application of architec-
tural design patterns improves quality and ability of the park to adapt to changing 
needs— that is, design for change. Teamwork is emphasized because effective col-
laboration and coordination between the teams and team members ensure that the 
facilities will be developed and deployed timely and seamlessly. The agile process 
has a number of merits. The investor can reap the benefits much earlier because the 
facilities are operational as early as desired and feasible. Since a small number of the 
facilities are developed and deployed at a time, errors can be corrected and changes 
can be made more easily. 

In summary, this text is centered around an agile unified methodology that inte-
grates UML, design patterns, and TDD, among others. The methodology presented 
in this book is called a “unified methodology” because it uses UML as the modeling 
language and it follows an agile unified process. It does not mean to unify any other 
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AUDIENCES 

This book is for students majoring in computer science, software engineering or 
 information systems, as well as software development professionals. In particular, it 
is  intended to be used as the primary material for upper-division undergraduate and 
 introductory graduate courses and professional training courses in the software  industry. 
This book’s material evolved over the last two decades from courses taught at universi-
ties and companies domestically and internationally, as well as from applications of the 
material to industry-sponsored projects and projects conducted by software engineers in 
various companies. These allowed the author to observe how students and software engi-
neers applied UP, UML, design patterns, and TDD, and the difficulties they faced. Their 
feedback led to the development of the Agile Unified Methodology (AUM) presented in 
this book and the continual improvement of the material.

The book describes AUM in detail to facilitate students to learn and develop anal-
ysis and design abilities. In particular, each analysis or design activity is decomposed 
into a number of steps, and how to perform each step is described in detail. This treat-
ment is intended to facilitate students learning how to perform analysis and design. 
Once acquired the abilities, one may skip some or most of the steps.

ORGANIZATION 

The book has 24 chapters, divided into eight parts: 

Part	I.	Introduction	and	System	Engineering. This part consists of the first three 
chapters. It provides an overview of the software life-cycle activities. In particular, 
it covers software process models, the notion of a methodology, the difference 
between a process and a methodology, and system engineering. 

Part	II.	Analysis	and	Architectural	Design. This part presents the planning phase activ-
ities. It includes requirements elicitation, domain modeling, and architectural design.

Part	 III.	Modeling	and	Design	of	 Interactive	Systems. This part deals with the 
modeling and design of interactive systems. It consists of six chapters. These 
chapters present how to identify use cases from the requirements, how to model 
and design actor–system interaction and object interaction behavior, how to ap-
ply responsibility assignment patterns, how to derive a design class diagram to 
serve as the design blueprint, and how to design the user interface. 

Part	IV.	Modeling	and	Design	of	Other	Types	of	Systems. This part consists of 
three chapters; each presents the modeling and design of one type of system. 
In particular, Chapter 13 presents the modeling and design of event-driven sys-
tems. Chapter 14 presents the modeling and design of transformational systems. 
Chapter 15 presents the modeling and design of business rule-based systems. 

Part	V.	Applying	Situation-Specific	Patterns. This part consists of two chapters 
and presents how to apply situation-specific patterns. A case study, that is, the 
design of a state diagram editor, is used to help understand the process. 

Part	VI.	Implementation	and	Quality	Assurance. This part consists of three chap-
ters. They present implementation considerations, software quality assurance 
concepts and activities, and software testing. 
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Part	 VII.	 Maintenance	 and	 Configuration	 Management. This part includes 
two chapters and covers software maintenance and software configuration 
management. 

Part	VIII.	Project	Management	and	Software	Security. The last part of the book 
consists of the last two chapters. One of the chapters presents software project 
management. The other chapter covers software security, that is, life-cycle activi-
ties concerning the modeling and design of secure software systems. 

The material can satisfy the needs of several software engineering courses. For 
example, 

1.	 Part I through Part III and selected topics from Part VI to Part VIII are a good 
combination for an Object-Oriented Software Engineering (OOSE) course or an 
Introduction to Software Engineering course. This could be a junior- or senior- 
level undergraduate course as well as an introductory graduate-level course. 

2.	 Part II, Part V, and selected sections from the other chapters could form a Soft-
ware Design Patterns course. It is recommended that the OOSE course described 
above be a prerequisite for this course. However, many international students 
may not have taken the OOSE course. In this case, a review of the methodology 
presented in Part II and Part III is recommended. The review of the methodology 
provides the framework for applying patterns. The review may take two to four 
weeks. 

3.	 Part VI and Part VII could be taught in various ways. They could form one course—
Quality Assurance, Testing, and Maintenance. They could be taught as two courses— 
Software Quality Assurance, and Software Testing and Maintenance. 

4.	 Chapters 13–15, 19, and 20 plus selected patterns from the other chapters may 
form a course on modeling, design, verification, and validation of complex systems. 

5.	 Part I, Parts VI–VIII, and selected chapters from the other parts may form a Soft-
ware Project Management course. 

Various teaching supplements can be found at http://www.mhhe.com/kung. These in-
clude PowerPoint teaching slides, pop quiz and test generation software, databases of 
test questions, sample course descriptions, syllabi, and a solution manual. Instructors 
who have not taught the courses may find these helpful in reducing preparation time 
and effort. 
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2

1
Introduction

Key Takeaway Points

••Software• engineering• aims• to• significantly• improve• software• productivity•
and• software•quality•while•reducing•software•costs•and•time•to•market.

••Software•engineering•consists•of•three•tracks•of•interweaving•life-cycle•activities:•
software•development,•software•quality•assurance,•and•software•project• man-
agement•activities.

Computers•are•used•everywhere•in•our•society.•It•is•difficult•to•find•a•hospital,•school,•
retail•shop,•bank,•factory,•or•any•other•organization•that•does•not•rely•on•computers.•
Our•cell•phones,•cars,•and•televisions•are•also•based•on•computer-powered•platforms.•
The• driving• force• behind• the• expanding• use• of• computers• is• the• market• economy.•
However,•it•is•the•software•that•makes•the•computers•work•in•the•ways•we•want.•Soft-
ware•or•computer•programs•consist•of•thousands•or•millions•of•instructions•that•di-
rect•the•computer•to•perform•complex•calculations•and•control•the•operations•of•hard-
ware•devices.•The•demand•for•computer•software•has•been•rapidly•increasing•during•
the•last•several•decades.•This•trend•is•expected•to•continue•for•the•foreseeable•future.

The•proliferation•of•computer•applications•creates•a•huge•demand•for•application•
software•developers.•According•to•the•Bureau•of•Labor•Statistics•(BLS),•application•
software•developer•was•one•of• the•30• fastest-growing•occupations• in•America• (bls.
gov/emp/tables/fastest-growing-occupations.htm).•The•number•of•positions•was•pro-
jected•to•grow•from•1,469,200•in•2019•to•1,789,200•in•2029,•an•increase•of•316,000,••
or• 21.50%.• The• median• annual• wage• for• an• application• software• developer• in••
May•2019•was•$110,140,•much•higher•than•the•median•annual•wage•for•all•occupa-
tions•($41,950).•Among•the•10•computer•and•IT•occupations•surveyed•by•the•BLS,•
only•application•software•developer•and•information•security•analyst•enter• into•the•
30•fastest-growing•list.•Its•median•pay•was•also•much•higher•than•the•median•pay•of•
$91,250•for•the•10•computer•and•IT•occupations•surveyed•by•the•BLS.

There• are• two• popular• misconceptions.• One• equates• application• software• de-
velopment•with•computer•programming.•The•other•equates•an•application•software•
developer•with•a•computer•programmer.•However,•according•to•the•BLS,•software•de-
velopers•create•the•applications•or•systems•that•run•on•a•computer•or•another•device.•

Chapter

2
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Chapter 1 Introduction 3

Computer•programmers•write•and•test•code• that•allows•computer•applications•and•
software•programs•to•function•properly.•The•BLS•survey•also•showed•that•the•median•
pay•for•a•computer•programmer•in•May•2019•was•$89,190,•which•was•lower•than•the•
median•pay•for•computer•and•IT•occupations•and•much•lower•than•the•median•pay•for•
an•application•software•developer.

Unlike•a•computer•programmer,•an•application•software•developer•is•required•to•
identify•and•formulate•feasible•and•cost-effective•solutions•to•solve•large,•complex•re-
al-world•problems•and•design•software•to•implement•such•solutions.•The•solutions•and•
the•software•must•take•into•account•potential•impact•to•public•health,•safety,•security,•
and•welfare•as•well•as•cultural,• social,•and•environmental•aspects•(abet.org).•To•be•
able•to•perform•the•work•required•of•an•application•software•developer,•an•education•
in•software•engineering•is•highly•desired.

1.1 WHAT IS SOFTWARE ENGINEERING?

Software•systems•are•complex•intellectual•products.•Software•development•must•en-
sure•that•the•software•system•meets•the•needs•of•the•intended•application,•the•budget•
is•not•overrun,•and•the•system•is•delivered•on•time.•To•accomplish•these•goals,•the•
term•“software•engineering”•was•proposed•at•a•NATO•conference•in•1968•to•advocate•
the•need• for•an•engineering•approach• to•software•production.•Since• then,•software•
engineering•has•become•a•discipline•and•made•remarkable•progress.•The•efforts•that•
take•place•in•the•field•lead•to•the•following:

Definition 1.1 Software engineering as• a• discipline• is• focused• on• the• research,•
education,• and• practice• of• engineering• processes,• methods,• and• techniques• to•
significantly• increase• software• productivity• and• software• quality• while• reducing•
software•costs•and•time•to•market.

This•definition•includes•several•important•points.•First,•the•overall•objective•of•
software•engineering•is•significantly•increasing•software•productivity•(P)•and•quality•
(Q)•while•reducing•software•production•and•operating•costs•(C)•as•well•as• time•to•
market•(T).•These•are•abbreviated•as•PQCT•in•this•book.•In•other•words,•significantly•
improving•PQCT•means•producing•higher-quality•software•more•quickly,•efficiently,•
and•cost-effectively.•These•will•eventually•contribute•to•the•improvement•of•our•lives.•
Second,• research,•education,•and•practice•of• software•engineering•processes,•meth-
ods,•and•techniques•are•the•means•to•significantly•improve•PQCT.

Software•development•involves•three•tracks•of•interweaving•activities,•as•Figure•1.1•
exhibits.•These•activities•take•place•simultaneously•throughout•the•software•life•cycle:

1.	 Software•development•activities.
2.	 Software•quality•assurance•activities.
3.	 Software•project•management•activities.

Software•development•activities•are•a•set•of•activities•performed•to•transform•
an•initial•system•concept•into•a•software•system•running•in•the•target•environment.•
Like•many•engineering•projects,• software•development•activities• include• software•

kun21701_ch01_001-009.indd   3 28/11/22   5:23 PM



4 Part I Introduction and System Engineering

specification,• software• design,• implementation,• testing,• deployment,• and• mainte-
nance.•Software•specification•determines•what•the•customer•and•users•want.•These•
are•specified•as•requirements•or•capabilities•that•the•software•system•must•deliver.•
Software•design•produces•a•software•solution•to•realize•the•software•requirements.•
In•particular,•it•determines•the•overall•software•structure,•called•the•software•archi-
tecture,•of•the•software•system.•The•architecture•depicts•the•major•system•compo-
nents•and•how•they•relate,•interface,•and•interact•with•each•other.•Software•design•
also•defines•the•user•interfaces•as•well•as•high-level•algorithms•for•the•system•com-
ponents.•During•implementation•and•testing,•the•design•is•converted•into•computer•
programs,• which• are• tested• to• ensure• that• they• work• as• the• customer• and• users•
expect.•The•software•system•is•then•installed•in•the•target•environment,•tested•and•
modified•to•ensure•that•it•works•properly.•During•the•maintenance•phase,•the•soft-
ware• system• is• continually• modified• to• correct• errors• and• enhance• functionality•
until•it•is•abandoned•or•replaced.

Software• quality• assurance• (QA)• activities• are• carried• out• alongside• the• de-
velopment•activities.•QA•activities•ensure• that• the•development•activities•are•car-
ried•out•correctly;•the•required•artifacts,•such•as•software•requirements•document•
(SRD)•and•software•design•document•(SDD),•are•produced•and•conform•to•quality•
standards;•and•the•software•system•will•fulfill•the•requirements.•These•are•accom-
plished•through•requirements•review,•design•review,•code•review•and•inspection,•as•
well•as•testing.

Software•project•management• activities• ensure• that• the• software• system•under•
development•will•be•delivered•on•time•and•within•budget•constraint.•One•important•
activity•of•project•management•is•project•planning.•It•takes•place•at•the•beginning•of•
a•project,•immediately•after•the•requirements•for•the•software•system•are•determined.•
In•particular,•effort•and•time•required•to•perform•the•three•tracks•of•activities•for•the•
project•are•estimated.•A•schedule•of•activities•is•produced•to•guide•the•project.•During•
the•development•and•deployment•process,•project•management•is•responsible•for•con-
tinuous•monitoring•of•project•progress•and•costs,•and•executing•necessary•actions•to•
adapt•the•project•to•emerging•situations.

FIGURE 1.1 Three tracks of life-cycle activities

Software quality assurance activities 

Software project management activities 
Cost & time
to market 

Quality 

Productivity Software development activities 
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1.2 WHY SOFTWARE ENGINEERING?

First,•software•is•used•in•all•sectors•of•our•society.•Companies•rely•on•software•to•run•
and•expand•their•businesses.•Airplanes,•vehicles,•medical•equipment,•and•numerous•
other• machines• and• devices• rely• on• software• to• operate.• Internet• of• Things• (IoT),•
cloud•computing,•and•AI•applications•also•heavily•rely•on•software.•Software•systems•
are•getting•much•larger,•extremely•complex,•and•highly•distributed.•Today,•it•is•com-
mon•to•develop•systems•that•contain•millions•of•lines•of•code.•For•example,•the•F35•
fighter• runs•on•8•million• lines•of•code,•Microsoft’s•Windows•operating•system•has•
about•50•million•lines•of•code,•and•Google•Search•plus•Gmail•plus•Google•Maps•con-
sist•of•2•billion•lines•of•code.•For•many•embedded•systems,•which•consist•of•hardware•
and•software,• the•software•cost•has• increased• to•90%–95%•of• the• total• system•cost•
from•5%–10%• three•decades• ago.•Some•embedded• systems•use• application-specific•
integrated•circuits•(ASIC),•system•on•chip•(SoC),•and/or•firmware.•These•are• inte-
grated•circuits•with•the•software•burned•into•the•hardware.•They•are•costly•to•replace;•
hence,• the•quality• of• the• software• is• critical.•These• call• for• a• software• engineering•
approach•to•system•development.

Second,•software•engineering•supports•teamwork,•which•is•needed•for•large•sys-
tem•development.•Large•software•systems•require•considerable•effort•to•design,•imple-
ment,•test,•and•maintain.•A•typical•software•engineer•can•produce•on•an•average•50–100••
lines• of• source• code• per• day.• This• includes• the• time• required• to• perform• analysis,•
design,•implementation,•integration,•and•testing.•Thus,•a•small•system•of•10,000•lines•
of•code•would•require•one•software•engineer•to•work•between•100•and•200•days•or••
5–10•months.•A•medium-sized•system•of•500,000•lines•of•source•code•would•require•
a•software•engineer•to•work•5,000–10,000•days,•or•20–40•years.•It•is•not•acceptable•
for• any• business• to• wait• this• long.• Therefore,• real-world• software• systems• must• be•
designed•and•implemented•by•a•team•or•teams•of•software•engineers.•For•example,•a•
medium-sized•software•system•requires•20–40•software•engineers•to•work•for•one•year.•
When•two•or•more•software•engineers•work•together•to•develop•a•software•system,•
they•face•serious•conceptualization,•communication,•and•coordination•challenges.

Conceptualization•is•the•process•of•observing•and•classifying•real-world•phenom-
ena•to•form•a•mental•model•to•help•understand•the•application•for•which•the•system•
is•built.•Conceptualization•is•a•challenge•for•teamwork•because•the•software•engineers•
may•perceive•the•world•differently•due•to•differences•in•their•education,•cultural•back-
grounds,•career•experiences,•assumptions,•and•other•factors.•The•parable•of•the•blind•
men•and•an•elephant•explains•this.•We•as•software•developers•are•like•the•four•blind•
men•trying•to•perceive•or•understand•an•application.•If•the•team•members•perceive•
the•application• incorrectly,• then•how•can• they•produce•software• that•will• correctly•
automate•the•application?•If•the•team•members•have•different•perceptions,•then•how•
can•they•design•and• implement•software•components• that•will•work•with•each•oth-
er?•Software•engineering•provides•modeling•languages•such•as•the•Unified•Modeling•
Language•(UML),•methods•and•techniques•to•help•developers•establish•a•common•
understanding•about•an•application•for•which•the•software•is•built.

When•a•team•of•software•engineers•works•together,•they•need•to•communicate•
their• analysis• and•design• ideas.•However,• the•natural• language• is• too• informal• and•
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6 Part I Introduction and System Engineering

sometimes•ambiguous.•Again,•UML•improves•the•communication•among•the•develop-
ers.•Finally,•when•teams•of•software•engineers•work•together,•how•can•they•collaborate•
and•coordinate•their•efforts?•For•example,•how•do•they•divide•the•work•and•assign•
the•pieces•to•the•teams•and•team•members?•How•do•they•integrate•the•components•
designed•and•implemented•by•different•teams•and•team•members?•Software•engineer-
ing•provides•a•solution.•That•is,•software•development•processes•and•methodologies,•
software•project•management,•and•QA•solve•these•problems.

1.3 SOFTWARE ENGINEERING ETHICS

Software•is•present•everywhere•in•our•society,•and•controls•and•affects•every•aspect•
of•our•lives.•Software•can•do•good•or•cause•harm•to•our•society•or•others.•Therefore,•
software•engineers•must•consider•social•and•ethical•responsibilities•when•designing,•
implementing,• and• testing• software.• In• this• regard,• the• ACM/IEEE-CS• Joint• Task•
Force•on•Software•Engineering•Ethics•and•Professional•Practices•recommended•the•
“Software•Engineering•Code•of•Ethics•and•Professional•Practice”•(Figure•1.2)•as•the•
standards•for•teaching•and•practicing•software•engineering.

Software•engineers•should•adhere•to•these•ethical•standards•in•their•profession-
al•practice•as•well•as•daily•lives.•For•example,•a•software•engineer•must•respect•the•
confidentiality•of•the•client•or•employer.•A•software•engineer•must•also•respect•and•
protect•the•intellectual•property•of•the•client•or•employer.•Sometimes,•a•software•en-
gineer•must• choose•one•act•or• another.•For• example,• a• software• engineer•happens•

FIGURE 1.2 The ACM/IEEE code of ethics

Source: https://ethics.acm.org/code-of-ethics/software-engineering-code/

Software Engineering Code of Ethics and Professional Practice (Short Version)

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details form a cohesive code.
Software engineers shall commit themselves to making the analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession. In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the following Eight Principles:
1. PUBLIC—Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the best interests of their client and
employer consistent with the public interest.
3. PRODUCT—Software engineers shall ensure that their products and related modifications meet the highest professional
standards possible.
4. JUDGMENT—Software engineers shall maintain integrity and independence in their professional judgment.
5. MANAGEMENT—Software engineering managers and leaders shall subscribe to and promote an ethical approach to the
management of software development and maintenance.
6. PROFESSION—Software engineers shall advance the integrity and reputation of the profession consistent with the public
interest.
7. COLLEAGUES—Software engineers shall be fair to and supportive of their colleagues.
8. SELF—Software engineers shall participate in lifelong learning regarding the practice of their profession and shall promote
an ethical approach to the practice of the profession.
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to•know•that•a•component•may•behave•abruptly•in•rare•circumstances,•which•might•
cause•property• damage•or• loss• of• lives.•He• also• knows• that• his• company•wants• to•
release•the•product•quickly•to•gain•back•market•share.•If•he•reports•the•problem,•then•
the•release•has•to•push•back•considerably,•and•he•would•become•the•“trouble•maker.”•
If•he•does•not•report,•then•devastating•tragedy•might•happen.•Such•a•hypothetic•sce-
nario•has•actually•occurred•again•and•again•in•our•industry.•Management•persons•also•
have•to•choose•between•right•and•wrong.•If•the•software•engineer•reports•the•problem,•
would•the•management•take•it•seriously?•As•a•matter•of•fact,•wrong•doings•pay•big•
prices—companies•were•ordered•to•pay•hefty•fines,•and•individuals•were•jailed•for•their•
wrong•acts.

Ethical•dilemmas•can•occur•in•our•daily•lives.•A•college•student•had•a•job•inter-
view•soon,•but•unfortunately•his•laptop•broke.•He•wanted•to•borrow•his•girlfriend’s•
laptop•for•the•weekend•to•prepare•for•the•interview,•but•the•laptop•belonged•to•her•
company.•In•this•case,•should•she•lend•the•laptop•to•her•boyfriend,•or•not•help•when•
he•needs•the•help?•What•would•you•think•his•girlfriend•should•do?

1.4 SOFTWARE ENGINEERING AND COMPUTER SCIENCE

What• is• the• difference• between• software• engineering• and• computer• science?• This•
question•is•often•asked•by•students•and•working•professionals.•First•of•all,•computer•
science• emphasizes• computational• efficiency,• resource• sharing,• accuracy,•optimiza-
tion,•and•performance.•These•can•be•measured•accurately•and•relatively•quickly.•In•
the•last•several•decades•(i.e.,•from•1950•to•the•present),•all•efforts•and•resources•spent•
in•computer•science•research•are•aimed•to•improve•these•aspects.•Most•chapters•of•a•
computer•science•textbook•are•written•about•methods,•algorithms,•and•techniques•to•
improve•or•optimize•these•aspects.

Unlike•computer•science,•software•engineering•emphasizes•software•PQCT.•For•
example,•obtaining•an•optimal•solution•is•often•the•goal•of•computer•science.•Software•
engineering•would•use•a•good-enough•solution•to•reduce•development•or•maintenance•
time•and•costs.•Efforts•and•resources•spent•in•software•engineering•R&D•are•aimed•
at•significantly• improving•software•PQCT.•Most•chapters•of•a•software•engineering•
textbook•are•written• about•methods• and• techniques• to• improve• these• four• aspects.•
Unfortunately,•the•impact•of•a•software•engineering•process•or•methodology•cannot•
be•measured•easily•and•immediately.•To•be•meaningful,•the•impact•must•be•assessed•
during•a• long•period•of• time•and•consume• tremendous•resources.•For•example,• re-
searchers•took•more•than•one•decade•to•realize•that•the•uncontrolled•goto•statement•
is•harmful.•That•is,•the•uncontrolled•use•of•the•goto•statement•results•in•poorly•struc-
tured•programs,•which•are•difficult•to•understand,•test,•and•maintain.

Computer•science• focuses•only•on• technical•aspects.•Software•engineering•has•
to•deal•with•nontechnical• issues.•For•example,• the•early• stages•of• the•development•
process•focus•on•identifying•business•needs•and•formulating•requirements•and•con-
straints.•These•activities•require•domain•knowledge,•analysis•and•design•experience,•
communication• skill,• and• customer• relations.• Software• engineering• also• requires•
knowledge•and•experience•in•project•management.•User•interface•design•has•to•con-
sider•human• factors• such• as• user• preference• and•how•users•would•use• the• system.••
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8 Part I Introduction and System Engineering

In•addition,•software•development•must•consider•political•issues•because•the•system•
may•affect•many•people•in•one•way•or•another.

Recognizing•the•differences•between•software•engineering•and•computer•science•
could•help•in•understanding•and•appreciating•software•engineering•processes,•meth-
odologies,•and•principles.•Consider,•for•example,•the•design•of•a•software•system•that•
needs•to•access•a•database.•Computer•science•might•emphasize•efficient•data•storage•
and•retrieval,•and•favor•a•design•in•which•the•program•accesses•the•database•directly.•
Such•a•design•would•make•the•program•sensitive•to•changes•to•the•database•design•
and•database•management• system•(DBMS).• If• the•database• schema•or• the•DBMS•
is•changed•or•replaced,•then•considerable•changes•have•to•be•made•to•the•program.•
This•could•be•difficult•and•costly.•Therefore,•software•engineering•would•not•consider•
this•a•good•design•decision•unless•efficient•database•access•is•highly•desired.•Instead,•
software•engineering•would•prefer•a•design•that•will•minimize•the•impact•of•database•
change•to•reduce•maintenance•effort,•costs,•and•time.

Despite•the•differences,•software•engineering•and•computer•science•are•closely•
related.• Computer• science• to• software• engineering• is• like• physics• to• electrical• and•
electronics•engineering,•or•chemistry•to•chemical•engineering.•That•is,•computer•sci-
ence•is•a•theoretical•and•technological•foundation•for•software•engineering.•Software•
engineering•is•application•of•computer•science.•However,•software•engineering•has•its•
own•research•topics.•These•include•research•in•software•processes•and•methodologies,•
software•verification,•validation•and•testing•techniques,•among•others.

Software•engineering•is•a•broad•area.•A•software•engineer•should•know•areas•of•
computer•science•including•programming•languages,•algorithms•and•data•structures,•
operating•systems,•database•systems,•artificial•intelligence,•and•computer•networks,•to•
mention•a•few.•Embedded•systems•development•requires•the•software•engineer•to•have•
a•basic•understanding•of•electronic•circuits•and•how•to•interface•with•hardware•devic-
es.•Finally,•it•takes•time•for•a•software•engineer•to•gain•domain•knowledge•and•design•
experience•to•become•a•good•software•architect.•These•challenges•and•the•ability•to•
design•and•implement•large•complex•systems•to•meet•practical•needs•make•software•
engineering•an•exciting•area.•The•ever-expanding•computer•application•creates•great•
opportunities•for•the•software•engineer•and•software•engineering•researcher.

1.5 SUMMARY

Software• engineering• is• defined• as• a• discipline• that•
investigates• and• applies• engineering• processes• and•
methodologies•to•improve•software•PQCT.•The•need•
for• software• engineering• is• discussed,• and• software•
life-cycle• activities• are• described.• The• chapter• ends•
with•a•discussion•of•software•engineering•ethics•and•
relationship•between•computer•science•and•software•
engineering.•That•is,•computer•science•is•a•foundation•

for•software•engineering.•While•computer•science•is•
mainly• concerned•with•optimization•and• efficiency,•
software• engineering• is• concerned• with• software•
PQCT.•Knowing• these•should•help•understand•soft-
ware• engineering• and• the• rationale• behind• the• pro-
cesses,• methodologies,• modeling• languages,• design•
patterns,•and•many•others.•All•these•are•designed•to•
improve•software•PQCT.
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1.6 CHAPTER REVIEW QUESTIONS

1.	 What•is•software•engineering?• Why•is•it•needed?

2.	 What•is•a•software•development•process?

3.	 What• is• software•quality•assurance?

4.	 What•is•software•project•management?

5.	 What• are• the• differences• and• relationship• between•
software• engineering• and•computer• science?•Can•we•
have•one•without•the•other?

1.7 EXERCISES

1.1	 Search•the•literature•and•find•four•other•definitions•
of•software•engineering•in•addition• to•the•one•given•
in•this•chapter.• Discuss•the•pros•and•cons•of•these•
definitions.

1.2	 A•number•of•methods•have•been•proposed•for•mea-
suring• software• productivity.• These• include• count-
ing•the•lines•of•source•code,•number•of•classes,•and•
number• of• methods• delivered.• Each• of• these• has•
drawbacks.• For• example,• each• line• of• a• program•
could•be•split•into•two•to•“double”•the•productivity•
although• the• functionality• of• the• program• has•not•
changed.•Discuss•the•pros•and•cons•of•each•of•these•
methods.

1.3	Describe•in•a•brief•article•the•functions•of•the•three•
tracks•of•life-cycle•activities.•Discuss•how• the• three•
tracks• of• activities• work• together• during• the• soft-
ware• development• life• cycle.• Discuss•how•they• im-
prove•software•PQCT.

1.4	 Should• optimization• be• a• focus• of• software• engi-
neering?• Briefly• explain,• and• justify• your• answer•
with•a•practical•example.

1.5	 Identify• three• computer• science• courses• of• your•
choice.•Show•the•usefulness•of•these•courses•in•the•
software•life-cycle•activities.

1.6	 There•are• interdependencies•between•software•pro-
ductivity,•quality,•cost,•and•time•to•market.•For•ex-
ample,•more•time•and•effort•spent•in•coding•could•
increase• productivity.• This• may• result• in• less• time•
and•effort•in•quality•assurance•because•the•total•time•
and•effort•of•a•project•are•fixed.•Poor•quality•could•
reduce• productivity• due• to• rework.• Identify• three•
pairs•of•such•interdependencies•of•your•choice.•Dis-
cuss•their•short-term•and•long-term•impacts•on•the•
software• development• organization.• How• should•
software•engineering•solve•this•“dilemma”•induced•
by•these•interdependencies?

1.7	 What•would•you•do• if• you•were• the• software•engi-
neer•described•in•Section•1.4?

1.8	 What•would•you•do•if•your•boy/girlfriend•desperately•
needs• to• use• your• laptop,• but• it• belongs• to• your•
company?
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