

Software Engineering
Second Edition

David C. Kung

kun21701_fm_i-xx.indd 1 29/11/22 4:59 PM

SOFTWARE ENGINEERING

Published by McGraw Hill LLC, 1325 Avenue of the Americas, New York, NY 10019. Copyright ©2024 by McGraw Hill LLC. All
rights reserved. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written consent of McGraw Hill LLC, including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LCR 28 27 26 25 24 23

ISBN 978-1-265-24243-5
MHID 1-265-24243-7

Cover Image: Shutterstock Images, LLC

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an
endorsement by the authors or McGraw Hill LLC, and McGraw Hill LLC does not guarantee the accuracy of the information presented
at these sites.

mheducation.com/highered

kun42437_ISE_ii.indd 2 25/11/22 10:30 AM

Dedication

To My Father

kun21701_fm_i-xx.indd 3 29/11/22 4:59 PM

iv

Preface xv

 Part I

Introduction and System
Engineering 1
 1 Introduction 2

 2 Software Process and Methodology 10

 3 System Engineering 43

 Part I I

Analysis and Architectural Design 67
 4 Software Requirements Elicitation 68

 5 Domain Modeling 92

 6 Architectural Design 123

 Part I I I

Modeling and Design of Interactive
Systems 155
 7 Deriving Use Cases from Requirements 156

 8 Actor–System Interaction Modeling 182

 9 Object Interaction Modeling 196

10 Applying Responsibility-Assignment
Patterns 224

11 Deriving a Design Class Diagram 246

12 User Interface Design 259

 Part I V

Modeling and Design of Other Types
of Systems 281
13 Modeling and Design of Event-Driven

Systems 282

14 Activity Modeling for Transformational
Systems 314

15 Modeling and Design of Rule-Based
Systems 330

 Part V

Applying Situation-Specific
Patterns 351
16 Applying Patterns to Design a State

Diagram Editor 352

17 Applying Patterns to Design a Persistence
Framework 400

 Part V I

Implementation and Quality
Assurance 423
18 Implementation Considerations 424

19 Software Quality Assurance 442

20 Software Testing 474

B r i e f C o n t e n t s

kun21701_fm_i-xx.indd 4 29/11/22 4:59 PM

 Brief Contents v

 Part V I I

Maintenance and Configuration
Management 511
21 Software Maintenance 512

22 Software Configuration Management 541

 Part V I I I

Project Management and
Software Security 553
23 Software Project Management 554

24 Software Security 584

 Appendices
A Personal Software Process: Estimation,

Planning, and Quality Assurance 608

B Java Technologies 611

C Software Tools 623

D Project Descriptions 638

E Object Constraint Language 644

Index 649

kun21701_fm_i-xx.indd 5 29/11/22 4:59 PM

vi

Preface xv

 Part I

Introduction and System
Engineering 1

Chapter 1
Introduction 2

1.1 	What	Is	Software	Engineering? 3

1.2 Why	Software	Engineering? 5

1.3 		Software	Engineering	Ethics 6

1.4 Software	Engineering	and	Computer	Science 7

1.5 Summary 8

1.6  Chapter	Review	Questions 9

1.7  Exercises 9

Chapter 2
Software Process and Methodology 10

2.1 		Challenges	of	System	Development 11

2.2 		Software	Process 12

2.3 		Theory	of	Wicked	Problems 13

2.4 		Software	Process	Models 15

2.4.1 Prototyping Process 15
2.4.2 Evolutionary Process 15
2.4.3 Spiral Process 16
2.4.4 The Unified Process 17
2.4.5 Personal Software Process 18
2.4.6 Team Software Process 23
2.4.7 Agile Processes 25

2.5 		Software	Methodology 31

2.5.1 Difference between Process and
Methodology 31

2.5.2 Benefits of a Methodology 32
2.5.3 Status of Software Development

Methodologies 32

2.6 Agile	Methods 33

2.6.1 Dynamic Systems Development
Method 33

2.6.2 Feature-Driven Development 35
2.6.3 Scrum 36
2.6.4 Extreme Programming 37
2.6.5 Agile Unified Methodology 38
2.6.6 Kanban 39

2.7  Summary 41

2.8  Chapter	Review	Questions 42

2.9  References 42

2.10 Exercises 42

Chapter 3
System Engineering 43

3.1 		What	Is	a	System? 44

3.2 		What	Is	System	Engineering? 45

3.3 		System	Requirements	Definition 48

3.3.1 Identifying Business Needs 48
3.3.2 Defining System Requirements 50

3.4 		System	Architectural	Design 50

3.4.1 System Decomposition 51
3.4.2 Requirements Allocation 54
3.4.3 Architectural Design Diagrams 55
3.4.4 Specification of Subsystem Functions and

Interfaces 59

3.5 Subsystems	Development 61

3.5.1 Object-Oriented Context Diagram 61
3.5.2 Usefulness of an Object-Oriented Context

Diagram 61
3.5.3 Collaboration of Engineering Teams 62

3.6 System	Integration,	Testing,	and	Deployment 63

3.7 System	Configuration	Management 63

3.8  Summary 65

3.9  Chapter	Review	Questions 65

3.10 Exercises 66

C o n t e n t s

kun21701_fm_i-xx.indd 6 29/11/22 4:59 PM

 Contents vii

 Part I I

Analysis and Architectural Design 67

Chapter 4
Software Requirements Elicitation 68

4.1 	What	Is	Requirements	Elicitation? 68

4.2 	Importance	of	Requirements	Elicitation 70

4.3 	Types	of	Requirement 71

4.4 	Challenges	of	Requirements	Elicitation 72

4.5 	Steps	for	Requirements	Elicitation 74

4.5.1 Collecting Information 75
4.5.2 Constructing Analysis Models 78
4.5.3 Deriving Requirements and Constraints 79
4.5.4 Requirements Specification Standards 84
4.5.5 Conducting Feasibility Study 86
4.5.6 Reviewing Requirements Specification 86

4.6 	Applying	Agile	Principles 87

4.7 	Requirements	Management	and	Tools 89

4.8	 Summary 90

4.9	 Chapter	Review	Questions 90

4.10	 Exercises 90

Chapter 5
Domain Modeling 92

5.1 		What	Is	Domain	Modeling? 92

5.2 		Why	Domain	Modeling? 93

5.3 		Object-Orientation	and	Class	Diagram 94

5.3.1 Extensional and Intentional Definitions 94
5.3.2 Class and Object 95
5.3.3 Object and Attribute 96
5.3.4 Association 97
5.3.5 Multiplicity and Role 98
5.3.6 Aggregation 99
5.3.7 Inheritance 100
5.3.8 Inheritance and Polymorphism 101
5.3.9 Association Class 102

5.4 		Steps	for	Domain	Modeling 103

5.4.1 Collecting Application Domain
Information 104

5.4.2 Brainstorming 105
5.4.3 Classifying Brainstorming Results 106
5.4.4 Visualizing the Domain Model 110

5.4.5 Domain Model Review Checklist 115

5.5 			Putting	It	Together 115

5.6 			Guidelines	for	Domain	Modeling 118

5.7 			Applying	Agile	Principles 120

5.8 			Tool	Support	for	Domain	Modeling 121

5.9 	Summary 121

5.10 Chapter	Review	Questions 122

5.11 	Exercises 122

Chapter 6
Architectural Design 123

6.1 		What	Is	Architectural	Design? 124

6.2 		The	Importance	of	Architectural	Design 124

6.3 		Software	Design	Principles 125

6.3.1 What Are Software Design Principles? 126
6.3.2 Design for Change 126
6.3.3 Separation of Concerns 127
6.3.4 Information Hiding 128
6.3.5 High Cohesion 129
6.3.6 Low Coupling 130
6.3.7 Keep It Simple and Stupid 131

6.4 		Types	of	System 131

6.4.1 Interactive Systems 132
6.4.2 Event-Driven Systems 133
6.4.3 Transformational Systems 134
6.4.4 Rule-Based Systems 135
6.4.5 Object-Persistence Subsystems 135
6.4.6 System and Subsystem 135

6.5 		Architectural	Styles 136

6.5.1 N-Tier Architectural Style 137
6.5.2 Client-Server Architectural Style 139
6.5.3 Main Program and Subroutine Architectural

Style 140
6.5.4 Event-Driven System Architecture 142
6.5.5 Persistence Framework Architectural Style 144
6.5.6 Other Architectural Styles 145

6.6 		Architectural	Design	Process 146

6.6.1 Determine Architectural Design
Objectives 147

6.6.2 Perform Custom Architectural Design 148
6.6.3 Specify Subsystem Functions and

Interfaces 148
6.6.4 Review the Architectural Design 149

6.7 		Architectural	Style	and	Package	Diagram 149

kun21701_fm_i-xx.indd 7 29/11/22 4:59 PM

viii Contents

6.8 	 		Guidelines	for	Architectural	Design 151

6.9 	 		Architectural	Design	and	Design	Patterns 152

6.10 		Applying	Agile	Principles 152

6.11 	Summary 153

6.12 	Chapter	Review	Questions 153

6.13 	Exercises 154

 Part I I I

Modeling and Design of Interactive
Systems 155

Chapter 7
Deriving Use Cases from Requirements 156

7.1 		What	Is	An	Actor? 157

7.2 		What	Is	a	Use	Case? 157

7.3 		Business	Process,	Operation,	and	Action 158

7.4 			Steps	for	Deriving	Use	Cases	from	Requirements 160

7.4.1 Deriving Use Cases, Actors, and
Subsystems 161

7.4.2 Constructing Use Case Diagrams 167
7.4.3 Specify Use Case Scopes 174
7.4.4 Producing a Requirement–Use Case

Traceability Matrix 176
7.4.5 Reviewing Use Case Specifications 177
7.4.6 Allocating Use Cases to Iterations 178

7.5 		Applying	Agile	Principles 179

7.6 		Tool	Support	for	Use	Case	Modeling 180

7.7  Summary 180

7.8  Chapter	Review	Questions 181

7.9  Exercises 181

Chapter 8
Actor–System Interaction Modeling 182

8.1 		What	Is	Actor–System	Interaction	Modeling? 183

8.2 		Importance	of	Actor–System	Interaction	Modeling 184

8.3 		Steps	for	Actor–System	Interaction	Modeling 184

8.3.1 Initializing a Two-Column Table 184
8.3.2 Specifying Actor–System Interaction 185
8.3.3 Reviewing Expanded Use Cases 186

8.4 		Specifying	Alternative	Flows 186

8.5 		Using	User	Interface	Prototypes 187

8.6 	 		Do	Not	Show	Exception	Handling 190

8.7 	 		Including	Other	Use	Cases 191

8.8 	 		Continuing	with	Other	Use	Cases 191

8.9 	 		Commonly	Seen	Problems 192

8.10 		Guidelines	for	Expanded	Use	Cases 193

8.11 	Summary 195

8.12 	Chapter	Review	Questions 195

8.13 	Exercises 195

Chapter 9
Object Interaction Modeling 196

9.1 		What	Is	Object	Interaction	Modeling? 196

9.2 		Uml	Sequence	Diagram 198

9.2.1 Notions and Notations 198
9.2.2 Representing Instances of a Class 198
9.2.3 Sequence Diagrams Illustrated 200
9.2.4 Sequence Diagram for Analysis and

Design 200
9.2.5 Using the Notations Correctly 202

9.3 		Steps	for	Object	Interaction	Modeling 204

9.3.1 Collecting Information About Business
Processes 204

9.3.2 Identifying Nontrivial Steps 204
9.3.3 Writing Scenarios for Nontrivial

Steps 205
9.3.4 Constructing Scenario Tables 207
9.3.5 Scenarios: How to Write Them 208
9.3.6 Converting Scenario Tables into Sequence

Diagrams 212
9.3.7 Object Interaction Modeling Review

Checklist 220

9.4 		Applying	Agile	Principles 220

9.5 			Tool	Support	for	Object	Interaction	Modeling 222

9.6 Summary 222

9.7 Chapter	Review	Questions 222

9.8 Exercises 223

Chapter 1 0
Applying Responsibility-Assignment Patterns 224

10.1 		What	Are	Design	Patterns? 225

10.2 		Why	Design	Patterns? 226

10.3 		Categories	of	Patterns 226

10.4 		Pattern	Specification 227

kun21701_fm_i-xx.indd 8 29/11/22 4:59 PM

 Contents ix

10.5 		The	Controller	Pattern 227

10.5.1 A Motivating Example 228
10.5.2 What Is a Controller? 230
10.5.3 Applying the Controller Pattern 231
10.5.4 Controller and Software Design

Principles 231
10.5.5 Types of Controller 233
10.5.6 Keeping Track of Use Case State 234
10.5.7 Bloated Controller 235
10.5.8 When to Apply the Controller

Pattern? 237
10.5.9 Guidelines for Applying Controller 237

10.6 		The	Expert	Pattern 238

10.6.1 Expert and Antiexpert 239
10.6.2 Expert Pattern Involving More Than One

Object 240
10.6.3 When to Apply the Expert Pattern? 240
10.6.4 Guidelines for Applying Expert 240

10.7 	The	Creator	Pattern 241

10.7.1 What Is a Creator? 242
10.7.2 Benefits of the Creator Pattern 243
10.7.3 When to Apply the Creator Pattern? 243

10.8  Summary 243

10.9  Chapter	Review	Questions 244

10.10 References 245

10.11  Exercises 245

Chapter 1 1
Deriving a Design Class Diagram 246

11.1 	What	Is	a	Design	Class	Diagram? 248

11.2 	Usefulness	of	a	Design	Class	Diagram 248

11.3 	Steps	for	Deriving	a	Design	Class	Diagram 249

11.3.1 Identifying Classes 249
11.3.2 Identifying Methods 250
11.3.3 Identifying Attributes 251
11.3.4 Identifying Relationships 253
11.3.5 Design Class Diagram Review

Checklist 255

11.4 	Organize	Classes	with	Package	Diagram 255

11.5 	Applying	Agile	Principles 256

11.6 	Tool	Support	for	Design	Class	Diagram 257

11.7  Summary 257

11.8  Chapter	Review	Questions 257

11.9  Exercises 258

Chapter 1 2
User Interface Design 259

12.1 	What	Is	User	Interface	Design? 260
12.2 	Why	Is	User	Interface	Design	Important? 261
12.3 	Graphical	User	Interface	Widgets 262

12.3.1 Container Widgets 262
12.3.2 Input, Output, and Information

Presentation Widgets 263
12.3.3 Guidelines for Using GUI Widgets 265

12.4 	User	Interface	Design	Process 266
12.4.1 Case Study: User Interface Design for a

Diagram Editor 266
12.4.2 Identify Major System Displays 267
12.4.3 Producing a Draft Layout Design 268
12.4.4 Specifying Interaction Behavior 270
12.4.5 Constructing a Prototype 272
12.4.6 Evaluating the User Interface Design

with Users 273
12.4.7 User Interface Design Review

Checklist 274
12.5 	Designing	User	Support	Capabilities 275
12.6 	Guidelines	for	User	Interface	Design 276
12.7 	Applying	Agile	Principles 278
12.8 	Tool	Support	for	User	Interface	Design 279
12.9  Summary 279
12.10 Chapter	Review	Questions 280
12.11 Exercises 280

 Part I V

Modeling and Design of Other Types
of Systems 281

Chapter 1 3
Modeling and Design of Event-Driven Systems 282

13.1 	What	Is	Object	State	Modeling? 283
13.2 	Why	Object	State	Modeling? 284
13.3 	Basic	Definitions 284
13.4 	Steps	for	Object	State	Modeling 285

13.4.1 Collecting and Classifying State Behavior
Information 285

13.4.2 Constructing a Domain Model to Show
the Context 288

kun21701_fm_i-xx.indd 9 29/11/22 4:59 PM

x Contents

13.4.4 Usefulness of the State Transition Table 292
13.4.5 Converting State Transition Table into

Analysis State Diagram 293
13.4.6 Converting Analysis State Diagram into

Design State Diagram 296
13.4.7 State Modeling Review Checklists 297

13.5 	The	State	Pattern 298

13.5.1 Conventional Approaches 298
13.5.2 What Is State Pattern? 299
13.5.3 Applying State Pattern 300

13.6 	Real-Time	Systems	Modeling	and	Design 303

13.6.1 The Transformational Schema 303
13.6.2 Timed State Machine 307
13.6.3 Interrupt Handling 308

13.7 	Applying	Agile	Principles 309

13.8 	Tool	Support	for	Object	State	Modeling 310

13.9  Summary 310

13.10 Chapter	Review	Questions 311

13.11 Exercises 311

Chapter 1 4
Activity Modeling for Transformational
Systems 314

14.1 	What	Is	Activity	Modeling? 315

14.2 	Why	Activity	Modeling? 316

14.3 	Activity	Modeling:	Technical	Background 316

14.3.1 Flowchart 316
14.3.2 Petri Net 317
14.3.3 Data Flow Diagram 318

14.4 	Uml	Activity	Diagram 320

14.5 	Steps	for	Activity	Modeling 321

14.5.1 Identifying Activities and Workflows 322
14.5.2 Producing a Preliminary Activity

Diagram 324
14.5.3 Introducing Branching, Forking, and

Joining 325
14.5.4 Refining Complex Activities 326
14.5.5 Activity Modeling Review Checklist 326

14.6 	Relationships	to	Other	Diagrams 327

14.7 	Applying	Agile	Principles 328

14.8 	Tool	Support	for	Activity	Modeling 328

14.9  Summary 329

14.10 Chapter	Review	Questions 329

14.11 Exercises 329

Chapter 1 5
Modeling and Design of Rule-Based Systems 330

15.1 	 	What	Is	a	Decision	Table? 331

15.2 	 	Usefulness	of	Decision	Table 332

15.3 	 	Systematic	Decision	Table	Construction 333

15.4 	 	Progressive	Decision	Table	Construction 334

15.5 	 	Checking	for	Desired	Properties 335

15.6 	 	Decision	Table	Consolidation 336

15.7 	 	Generating	Code	from	a	Decision	Table 337

15.8 	 		Using	a	Decision	Table	in	Test-Driven	
Development 337

15.9 	 	Decision	Trees 337

15.10 	Applying	the	Interpreter	Pattern 338

15.10.1 Defining a Grammar 340
15.10.2 Constructing a Class Diagram to

Represent the Grammar 340
15.10.3 Converting a Conditional Expression

into a Parse Tree 341
15.10.4 Implementing the Context 342
15.10.5 Creating and Evaluating Business

Rules 342
15.10.6 Updating Rules Dynamically 342
15.10.7 Merits of the Interpreter Pattern 342

15.11 		Machine	Learning	and	AI	Application		
Development 344

15.11.1 Brief Introduction to Machine
Learning 344

15.11.2 A Workflow for Developing AI
Applications 345

15.11.3 Applying Patterns 348

15.12 	Summary 348

15.13 	Chapter	Review	Questions 349

15.14 	Exercises 349

 Part V

Applying Situation-Specific
Patterns 351

Chapter 1 6
Applying Patterns to Design a State Diagram
Editor 352

16.1 	Techniques	Used	by	Patterns 353

kun21701_fm_i-xx.indd 10 29/11/22 4:59 PM

 Contents xi

16.1.1 Program to an Interface 354
16.1.2 Use Polymorphism to Provide Behavioral

Variations 354
16.1.3 Favor Composition over Inheritance 355
16.1.4 Use Delegation to Support Composition 356

16.2 	Process	for	Applying	Patterns 356

16.3 	Case	Study:	State	Diagram	Editor 358

16.4 	Working	with	Complex	Structures 359

16.4.1 Representing Recursive Whole-Part
Structures 360

16.4.2 Accessing Different Data Structures with
Iterator 363

16.4.3 Choosing Algorithms with Strategy 366
16.4.4 Applying Type-Dependent Operations

with Visitor 368
16.4.5 Storing and Restoring Object State with

Memento 372

16.5 	Object	Creation	for	Different	Design	Objectives 375

16.5.1 Creating Families of Products 375
16.5.2 Varying Process and Process Steps 377
16.5.3 Reusing Objects with Flyweight 380

16.6 	Designing	Graphical	User	Interface	and	Display 384

16.6.1 Keeping Track of Editing States 384
16.6.2 Responding to Editing Events 386
16.6.3 Converting One Interface to Another 389
16.6.4 Request Handler Is Unknow in Advance 391
16.6.5 Enhancing Display Capability with

Decorator 395

16.7 	Applying	Agile	Principles 398

16.8  Summary 398

16.9  Chapter	Review	Questions 399

16.10 Exercises 399

16.11 References 399

Chapter 1 7
Applying Patterns to Design a Persistence
Framework 400

17.1 	Problems	with	Direct	Database	Access 401

17.2 	Hiding	Persistence	Storage	with	Bridge 401

17.3 	Encapsulating	Database	Requests	as	Commands 404

17.4 	Hiding	Network	Communication	with	Remote	
Proxy 408

17.5 	Sharing	Common	Code	with	Template	Method 411

17.6 	Retrieving	Different	Objects	with	Factory	
Method 414

17.7 	Reducing	Number	of	Classes	with	Prototype 416

17.8 	Applying	Agile	Principles 421

17.9  Summary 421

17.10 Chapter	Review	Questions 422

17.11  Exercises 422

 Part V I

Implementation and Quality
Assurance 423

Chapter 1 8
Implementation Considerations 424

18.1 	Coding	Standards 424

18.1.1 What Are Coding Standards? 425
18.1.2 Why Coding Standards? 429
18.1.3 Guidelines for Practicing Coding

Standards 429

18.2 	Organizing	the	Implementation	Artifacts 431

18.3 	Generating	Code	from	Design 433

18.3.1 Implementing Classes and Interfaces 433
18.3.2 From Sequence Diagram to Method

Code Skeleton 433
18.3.3 Implementing Association Relationships 434

18.4 	Assigning	Implementation	Work	to	Team	
Members 435

18.5 	Pair	Programming 435

18.6 	Test-Driven	Development 436

18.6.1 Test-Driven Development Workflow 436
18.6.2 Merits of Test-Driven Development 439
18.6.3 Potential Problems 439

18.7 	Applying	Agile	Principles 439

18.8 	Tool	Support	for	Implementation 440

18.9  Summary 440

18.10 Chapter	Review	Questions 441

18.11 Exercises 441

Chapter 1 9
Software Quality Assurance 442

19.1 	Benefits	of	Software	Quality	Assurance 442

kun21701_fm_i-xx.indd 11 29/11/22 4:59 PM

xii Contents

19.2 	Software	Quality	Attributes 443

19.3 	Quality	Measurements	and	Metrics 445

19.3.1 Usefulness of Quality Measurements and
Metrics 446

19.3.2 Conventional Quality Metrics 447
19.3.3 Reusing Conventional Metrics

for Object-Oriented Software 453
19.3.4 Object-Oriented Quality Metrics 453

19.4 	Software	Verification	and	Validation		
Techniques 457

19.4.1 Inspection 458
19.4.2 Walkthrough 459
19.4.3 Peer Review 459

19.5 	Verification	and	Validation	in	the	Life	Cycle 461

19.6 	Software	Quality	Assurance	Functions 464

19.6.1 Definition of Processes and
Standards 465

19.6.2 Quality Management 468
19.6.3 Process Improvement 469

19.7 	Applying	Agile	Principles 471

19.8 	Tool	Support	for	SQA 472

19.9  Summary 473

19.10 Chapter	Review	Questions 473

19.11 Exercises 473

Chapter 2 0
Software Testing 474

20.1 	What	Is	Software	Testing? 475

20.2 	Why	Software	Testing? 476

20.3 	Conventional	Black-Box	Testing 477

20.3.1 Functional Testing: An Example 477
20.3.2 Equivalence Partitioning 478
20.3.3 Boundary Value Analysis 480
20.3.4 Cause-Effect Analysis 482

20.4 	Conventional	White-Box	Testing 483

20.4.1 Basis Path Testing 483
20.4.2 Cyclomatic Complexity 485
20.4.3 Flow Graph Test Coverage Criteria 485
20.4.4 Testing Loops 486
20.4.5 Data Flow Testing 487
20.4.6 Coverage Criteria for Data Flow

Testing 488
20.4.7 Interprocedural Data Flow Testing 489

20.5 	Test	Coverage 489

20.6 	A	Generic	Software	Testing	Process 490

20.7 	Object-Oriented	Software	Testing 492

20.7.1 Use Case–Based Testing 492
20.7.2 Object State Testing with ClassBench 494
20.7.3 Testing Class Hierarchy 497
20.7.4 Testing Exception-Handling Capabilities 497

20.8 	Testing	Web	Applications 498

20.8.1 Object-Oriented Model for Web
Application Testing 498

20.8.2 Static Analysis Using the Object-Oriented
Model 499

20.8.3 Test Case Generation Using the Object-
Oriented Model 500

20.8.4 Web Application Testing with HttpUnit 500

20.9 	Testing	for	Nonfunctional	Requirements 500

20.9.1 Performance and Stress Testings 500
20.9.2 Testing for Security 501
20.9.3 Testing User Interface 502

20.10 	Software	Testing	in	the	Life	Cycle 503

20.11 	Regression	Testing 506

20.12 	When	to	Stop	Testing? 506

20.13 	Applying	Agile	Principles 507

20.14 	Tool	Support	for	Testing 507

20.15  Summary 508

20.16  Chapter	Review	Questions 508

20.17  Exercises 508

20.18  References 509

 Part V I I

Maintenance and Configuration
Management 511

Chapter 2 1
Software Maintenance 512

21.1 	What	Is	Software	Maintenance? 513

21.2 	Factors	That	Mandate	Change 513

21.3 	Lehman’s	Laws	of	System	Evolution 514

21.4 	Types	of	Software	Maintenance 515

21.5 	Software	Maintenance	Process	and	Activities 516

21.5.1 Maintenance Process Models 516
21.5.2 Program Understanding 517
21.5.3 Change Identification and Analysis 518
21.5.4 Configuration Change Control 520

kun21701_fm_i-xx.indd 12 29/11/22 4:59 PM

 Contents xiii

21.5.5 Change Implementation, Testing, and
Delivery 521

21.6 	Reverse-Engineering 521

21.6.1 Reverse-Engineering Workflow 521
21.6.2 Usefulness of Reverse-Engineering 522
21.6.3 Reverse-Engineering: A Case Study 522

21.7 	Software	Reengineering 523

21.7.1 Objectives of Reengineering 523
21.7.2 Software Reengineering Process 524
21.7.3 Software Reengineering: A Case

Study 525

21.8 	Software	Evolution 527

21.8.1 Planning Phase 527
21.8.2 Iterative Phase 529

21.9 	Patterns	for	Software	Maintenance 532

21.9.1 Simplifying Client Interface with Facade 532
21.9.2 Simplifying Component Interaction with

Mediator 533
21.9.3 Patterns for Software Maintenance 534

21.10 	Applying	Agile	Principles 535

21.11 	Tool	Support	for	Software	Maintenance 536

21.12 	Summary 539

21.13 	Chapter	Review	Questions 539

21.14 	Exercises 539

Chapter 2 2
Software Configuration Management 541

22.1 	The	Baselines	of	a	Software	Life	Cycle 542

22.2 	What	Is	Software	Configuration	Management? 543

22.3 	Why	Software	Configuration	Management? 544

22.4 	Software	Configuration	Management	
Functions 544

22.4.1 Software Configuration Identification 545
22.4.2 Software Configuration Change Control 547
22.4.3 Software Configuration Auditing 548
22.4.4 Software Configuration Status

Accounting 549

22.5 	Configuration	Management	in	an	Agile	Project 549

22.6 	Software	Configuration	Management	Tools 549

22.7 Summary 551

22.8 Chapter	Review	Questions 551

22.9 Exercises 551

 Part V I I I

Project Management and
Software Security 553

Chapter 2 3
Software Project Management 554

23.1 	Project	Organization 555

23.1.1 Project Format 555
23.1.2 Team Structure 557

23.2 	Effort	Estimation	Methods 558

23.2.1 The Function Point Method 559
23.2.2 The COCOMO II Model 561
23.2.3 The Delphi Estimation Method 566
23.2.4 Agile Estimation 567

23.3 	Project	Planning	and	Scheduling 569

23.3.1 PERT Chart 569
23.3.2 Gantt Chart and Staff Allocation 571
23.3.3 Agile Planning 572

23.4 	Risk	Management 573

23.4.1 Risk Identification 574
23.4.2 Risk Analysis and Prioritizing 575
23.4.3 Risk Management Planning 577
23.4.4 Risk Resolution and Monitoring 577

23.5 		Process	Improvement 577

23.6 		Applying	Agile	Principles 579

23.7 		Tool	Support	for	Project	Management 580

23.8 	Summary 581

23.9 	Chapter	Review	Questions 581

23.10 Exercises 582

Chapter 2 4
Software Security 584

24.1 	What	Is	Software	Security? 585

24.2 	Security	Requirements 585

24.3 	Secure	Software	Design	Principles 586

24.4 	Secure	Software	Design	Patterns 588

24.5 	Seven	Best	Practices	of	Software	Security 590

24.6 	Risk	Analysis	with	an	Attack	Tree 591

24.7 	Software	Security	in	the	Life	Cycle 592

24.7.1 Security in the Planning Phase 593

kun21701_fm_i-xx.indd 13 29/11/22 4:59 PM

xiv Contents

24.8 	Applying	Agile	Principles 605

24.9 Summary 606

24.10  Chapter	Review	Questions 606

24.11 Exercises 607

 Appendices
A Personal Software Process: Estimation,

Planning, and Quality Assurance 608
A.1 	Effort	Estimation	in	PSP 608

A.2 	Software	Quality	Assurance	in	PSP 610

A.3 	Design	and	Quality 610

B Java Technologies 611
B.1 	Getting	Started	with	Database	Connectivity 611

B.1.1 What Is Database Connectivity? 611
B.1.2 Setting Up Data Sources 611
B.1.3 Accessing Databases from a Program 611

B.2 	Getting	Started	with	Swing 613

B.2.1 Creating Main Window with JFrame 613
B.2.2 Using Layout Managers to Arrange Com-

ponents 614
B.2.3 Processing Button Events with Action

Listener 616
B.2.4 Implementing Drawing Capabilities 617

B.3 	Getting	Started	with	Java	Server	Pages 617

B.3.1 What Are Java Server Pages? 617
B.3.2 JSP Workflow 617
B.3.3 Installing a Web Server with a JSP

Container 618
B.3.4 Using Java Server Pages 618

C Software Tools 623
C.1 	NetBeans 623

C.2 	Using	JUnit 624

C.3 	Running	JUnit	in	NetBeans 628

C.4 	The	Cobertura	Coverage	Tool 628

C.5 	Using	CVS	and	Subversion	in	NetBeans 629

C.5.1 Creating a CVS Remote Repository 629
C.5.2 Setting Up Subversion in NetBeans 631
C.5.3 Checking Out Files from a Repository 633
C.5.4 Editing Sources and Viewing Changes 635
C.5.5 Viewing File Status 635
C.5.6 Comparing File Revisions 635
C.5.7 Merging Changes from Repository 636
C.5.8 Resolving Conflicts 636
C.5.9 Updating Local Copies 636
C.5.10 Committing Local Files to a

Repository 636
C.5.11 Importing Files into a Repository 637

D Project Descriptions 638
D.1 	Car	Rental	System 638

D.2 	National	Trade	Show	Service	System 639

D.3 	Study	Abroad	Management	System 640

D.4 UML	Class	Diagram	Editor 642

E Object Constraint Language 644
E.1 	Reserved	Words	and	Operators 644

E.2 	Context	and	Invariant 644

E.3 	Attribute	Initialization 645

E.4 	Operation	Specification 645

E.5 	Derivation	Rules 646

E.6 	Navigation	over	Association	Relationships 646

E.7 	Navigation	to	and	from	Association	Classes 646

E.8 	Collection	Types 646

E.9 	Collection	Operations 647

E.10 	Let	Operation 648

Index 649

kun21701_fm_i-xx.indd 14 29/11/22 4:59 PM

BACKGROUND

Computers are widely used in all sectors of our society, performing a variety of func-
tions with the application software running on them. As a result, the market for soft-
ware engineers is booming. There is a significant gap between the demand and supply,
especially for graduates with software engineering education.

Many people do not know the scope and usefulness of software engineering, and
the discipline is often misunderstood. Many media outlets deem software engineering
as writing Java programs. Some students think that software engineering includes
everything related to software. Others think that software engineering is drawing
UML diagrams, as the following story illustrates. Years ago, after the first class of a
software engineering course, a student told me, “professor, you know that this will be
an easy course for me because we’ve drawn lots of UML diagrams before.” At the end
of the semester, the student came to me again and said, “professor, I want to tell you
that we worked very hard, but we learned a lot about OO design. It is not just drawing
UML diagrams.” So what is software engineering? As a discipline, it encompasses
research, education, and application of engineering processes, methodologies, quality
assurance, and project management to significantly increase software productivity
and software quality while reducing software cost and time to market. A software pro-
cess describes the phases and what should be done in each phase. It does not specify
(in detail) how to perform the activities in each phase. A modeling language, such
as UML, defines the notations, syntax, and semantics for communicating and docu-
menting analysis and design ideas. UML and the Unified Process (UP) are good and
necessary but not sufficient. This is because how to produce the analysis and design
ideas required to draw meaningful UML diagrams is missing.

MOTIVATION

To fill the gap mentioned above, we need a methodology or a “cook-book.” Unlike a
process, a methodology is a detailed description of the steps and procedures or how to
carry out the activities to the extent that a beginner can follow to produce and deploy
the desired software system. Without a methodology, a beginning software engineer
would have to spend years of on-the-job training to learn design, implementation, and
testing skills.

This book is also motivated by emerging interests in agile processes, design pat-
terns, and test-driven development (TDD). Agile processes emphasize teamwork, de-
sign for change, rapid deployment of small increments of the software system, and
joint development with the customer and users. Design patterns are effective design

P r e f a c e

kun21701_fm_i-xx.indd 15 29/11/22 4:59 PM

xvi Preface

solutions to common design problems. They promote software reuse and improve
team communication. Patterns also empower less-experienced software engineers to
produce high-quality software because patterns encode software design principles.
TDD advocates testable software, and requires test scripts to be produced before the
implementation so that the latter can be tested immediately and frequently.

As an analogy, consider the development of an amusement park. The overall pro-
cess includes the following phases: planning, public approval, analysis and design, fi-
nancing, construction drawings, construction, procurement of equipment, installation of
equipment, preopening, and grand opening. However, knowing the overall process is not
enough. The development team must know how to perform the activities of the phases.
For example, the planning activities include development of initial concept, feasibility
study, and master plan generation. The theme park team must know how to perform these
activities. The analysis and design activities include “requirements acquisition” from stake-
holders, site investigation, design of park layout, design of theming for different areas of the
park, creating models to study the layout design and theming, and producing the master
design. Again, the theme park team must know how to perform these activities to produce
the master design. Unlike a process that describes the phases of activities, a methodology
details the steps and procedures or how to perform the activities.

The development of an amusement park is a multiyear project and costs billions
of dollars. The investor wants the park to generate revenue as early as possible, but
with the above process, the investor has to wait until the entire park is completed.
Once the master design is finalized, it cannot be modified easily due to the restrictions
imposed by the conventional process. If the park does not meet the expectations of the
stakeholders, then changes are costly once the park is completed.

Agile processes are aimed to solve these problems. With an agile process, a list
of preliminary theme park requirements is acquired quickly and allowed to evolve
during the development process. The amusement and entertainment facilities are
then derived from the requirements and carefully grouped into clusters of facilities.
A plan to develop and deploy the clusters in relatively short periods of time is pro-
duced, that is, rapid deployment of small increments. Thus, instead of a finalized
master design, the development process designs and deploys one cluster at a time. As
the clusters of facilities are deployed and operational, feedback is sought and changes
to the requirements, the development plan, budget, and schedule are worked out with
the stakeholders—that is, joint development. In addition, the application of architec-
tural design patterns improves quality and ability of the park to adapt to changing
needs— that is, design for change. Teamwork is emphasized because effective col-
laboration and coordination between the teams and team members ensure that the
facilities will be developed and deployed timely and seamlessly. The agile process
has a number of merits. The investor can reap the benefits much earlier because the
facilities are operational as early as desired and feasible. Since a small number of the
facilities are developed and deployed at a time, errors can be corrected and changes
can be made more easily.

In summary, this text is centered around an agile unified methodology that inte-
grates UML, design patterns, and TDD, among others. The methodology presented
in this book is called a “unified methodology” because it uses UML as the modeling
language and it follows an agile unified process. It does not mean to unify any other

kun21701_fm_i-xx.indd 16 29/11/22 4:59 PM

 Preface xvii

AUDIENCES

This book is for students majoring in computer science, software engineering or
 information systems, as well as software development professionals. In particular, it
is intended to be used as the primary material for upper-division undergraduate and
 introductory graduate courses and professional training courses in the software industry.
This book’s material evolved over the last two decades from courses taught at universi-
ties and companies domestically and internationally, as well as from applications of the
material to industry-sponsored projects and projects conducted by software engineers in
various companies. These allowed the author to observe how students and software engi-
neers applied UP, UML, design patterns, and TDD, and the difficulties they faced. Their
feedback led to the development of the Agile Unified Methodology (AUM) presented in
this book and the continual improvement of the material.

The book describes AUM in detail to facilitate students to learn and develop anal-
ysis and design abilities. In particular, each analysis or design activity is decomposed
into a number of steps, and how to perform each step is described in detail. This treat-
ment is intended to facilitate students learning how to perform analysis and design.
Once acquired the abilities, one may skip some or most of the steps.

ORGANIZATION

The book has 24 chapters, divided into eight parts:

Part	I.	Introduction	and	System	Engineering. This part consists of the first three
chapters. It provides an overview of the software life-cycle activities. In particular,
it covers software process models, the notion of a methodology, the difference
between a process and a methodology, and system engineering.

Part	II.	Analysis	and	Architectural	Design. This part presents the planning phase activ-
ities. It includes requirements elicitation, domain modeling, and architectural design.

Part	 III.	Modeling	and	Design	of	 Interactive	Systems. This part deals with the
modeling and design of interactive systems. It consists of six chapters. These
chapters present how to identify use cases from the requirements, how to model
and design actor–system interaction and object interaction behavior, how to ap-
ply responsibility assignment patterns, how to derive a design class diagram to
serve as the design blueprint, and how to design the user interface.

Part	IV.	Modeling	and	Design	of	Other	Types	of	Systems. This part consists of
three chapters; each presents the modeling and design of one type of system.
In particular, Chapter 13 presents the modeling and design of event-driven sys-
tems. Chapter 14 presents the modeling and design of transformational systems.
Chapter 15 presents the modeling and design of business rule-based systems.

Part	V.	Applying	Situation-Specific	Patterns. This part consists of two chapters
and presents how to apply situation-specific patterns. A case study, that is, the
design of a state diagram editor, is used to help understand the process.

Part	VI.	Implementation	and	Quality	Assurance. This part consists of three chap-
ters. They present implementation considerations, software quality assurance
concepts and activities, and software testing.

kun21701_fm_i-xx.indd 17 29/11/22 4:59 PM

xviii Preface

Part	 VII.	 Maintenance	 and	 Configuration	 Management. This part includes
two chapters and covers software maintenance and software configuration
management.

Part	VIII.	Project	Management	and	Software	Security. The last part of the book
consists of the last two chapters. One of the chapters presents software project
management. The other chapter covers software security, that is, life-cycle activi-
ties concerning the modeling and design of secure software systems.

The material can satisfy the needs of several software engineering courses. For
example,

1.	 Part I through Part III and selected topics from Part VI to Part VIII are a good
combination for an Object-Oriented Software Engineering (OOSE) course or an
Introduction to Software Engineering course. This could be a junior- or senior-
level undergraduate course as well as an introductory graduate-level course.

2.	 Part II, Part V, and selected sections from the other chapters could form a Soft-
ware Design Patterns course. It is recommended that the OOSE course described
above be a prerequisite for this course. However, many international students
may not have taken the OOSE course. In this case, a review of the methodology
presented in Part II and Part III is recommended. The review of the methodology
provides the framework for applying patterns. The review may take two to four
weeks.

3.	 Part VI and Part VII could be taught in various ways. They could form one course—
Quality Assurance, Testing, and Maintenance. They could be taught as two courses—
Software Quality Assurance, and Software Testing and Maintenance.

4.	 Chapters 13–15, 19, and 20 plus selected patterns from the other chapters may
form a course on modeling, design, verification, and validation of complex systems.

5.	 Part I, Parts VI–VIII, and selected chapters from the other parts may form a Soft-
ware Project Management course.

Various teaching supplements can be found at http://www.mhhe.com/kung. These in-
clude PowerPoint teaching slides, pop quiz and test generation software, databases of
test questions, sample course descriptions, syllabi, and a solution manual. Instructors
who have not taught the courses may find these helpful in reducing preparation time
and effort.

kun21701_fm_i-xx.indd 18 29/11/22 4:59 PM

 Preface xix

ACKNOWLEDGMENTS

I would like to thank my numerous students who constantly stimulate me with their
questions, feedback, enthusiasm, and effort to apply AUM to real-world projects. They
provided valuable improvement suggestions. Many continue to practice AUM in in-
dustry after graduation and share with me their valuable experiences. I also want to
thank the reviewers and numerous instructors for their comments and suggestions.
These have significantly improved the organization, presentation, and many other as-
pects of the book. I am thankful for the opportunities to teach on-site training courses
and for-credit courses for various companies. These allow me to interact with many
software developers and learn from them. Some companies let the developers apply
AUM and patterns to in-house or product-development projects. All of these proj-
ects generated very positive feedback including high-quality design documentation
and drastic reduction in defect rates. I want to thank the managements of various
companies for their constant support to industry-university collaboration and the
 opportunity for me to learn from practice.

kun21701_fm_i-xx.indd 19 29/11/22 4:59 PM

This page intentionally left blank

Introduction and System
Engineering

Chapter 1  Introduction 2
Chapter 2 Software Process and Methodology 10
Chapter 3 System Engineering 43

p a r t I

kun21701_ch01_001-009.indd 1 28/11/22 5:23 PM

2

1
Introduction

Key Takeaway Points

••Software• engineering• aims• to• significantly• improve• software• productivity•
and• software•quality•while•reducing•software•costs•and•time•to•market.

••Software•engineering•consists•of•three•tracks•of•interweaving•life-cycle•activities:•
software•development,•software•quality•assurance,•and•software•project• man-
agement•activities.

Computers•are•used•everywhere•in•our•society.•It•is•difficult•to•find•a•hospital,•school,•
retail•shop,•bank,•factory,•or•any•other•organization•that•does•not•rely•on•computers.•
Our•cell•phones,•cars,•and•televisions•are•also•based•on•computer-powered•platforms.•
The• driving• force• behind• the• expanding• use• of• computers• is• the• market• economy.•
However,•it•is•the•software•that•makes•the•computers•work•in•the•ways•we•want.•Soft-
ware•or•computer•programs•consist•of•thousands•or•millions•of•instructions•that•di-
rect•the•computer•to•perform•complex•calculations•and•control•the•operations•of•hard-
ware•devices.•The•demand•for•computer•software•has•been•rapidly•increasing•during•
the•last•several•decades.•This•trend•is•expected•to•continue•for•the•foreseeable•future.

The•proliferation•of•computer•applications•creates•a•huge•demand•for•application•
software•developers.•According•to•the•Bureau•of•Labor•Statistics•(BLS),•application•
software•developer•was•one•of• the•30• fastest-growing•occupations• in•America• (bls.
gov/emp/tables/fastest-growing-occupations.htm).•The•number•of•positions•was•pro-
jected•to•grow•from•1,469,200•in•2019•to•1,789,200•in•2029,•an•increase•of•316,000,••
or• 21.50%.• The• median• annual• wage• for• an• application• software• developer• in••
May•2019•was•$110,140,•much•higher•than•the•median•annual•wage•for•all•occupa-
tions•($41,950).•Among•the•10•computer•and•IT•occupations•surveyed•by•the•BLS,•
only•application•software•developer•and•information•security•analyst•enter• into•the•
30•fastest-growing•list.•Its•median•pay•was•also•much•higher•than•the•median•pay•of•
$91,250•for•the•10•computer•and•IT•occupations•surveyed•by•the•BLS.

There• are• two• popular• misconceptions.• One• equates• application• software• de-
velopment•with•computer•programming.•The•other•equates•an•application•software•
developer•with•a•computer•programmer.•However,•according•to•the•BLS,•software•de-
velopers•create•the•applications•or•systems•that•run•on•a•computer•or•another•device.•

Chapter

2

kun21701_ch01_001-009.indd 2 28/11/22 5:23 PM

Chapter 1 Introduction 3

Computer•programmers•write•and•test•code• that•allows•computer•applications•and•
software•programs•to•function•properly.•The•BLS•survey•also•showed•that•the•median•
pay•for•a•computer•programmer•in•May•2019•was•$89,190,•which•was•lower•than•the•
median•pay•for•computer•and•IT•occupations•and•much•lower•than•the•median•pay•for•
an•application•software•developer.

Unlike•a•computer•programmer,•an•application•software•developer•is•required•to•
identify•and•formulate•feasible•and•cost-effective•solutions•to•solve•large,•complex•re-
al-world•problems•and•design•software•to•implement•such•solutions.•The•solutions•and•
the•software•must•take•into•account•potential•impact•to•public•health,•safety,•security,•
and•welfare•as•well•as•cultural,• social,•and•environmental•aspects•(abet.org).•To•be•
able•to•perform•the•work•required•of•an•application•software•developer,•an•education•
in•software•engineering•is•highly•desired.

1.1 WHAT IS SOFTWARE ENGINEERING?

Software•systems•are•complex•intellectual•products.•Software•development•must•en-
sure•that•the•software•system•meets•the•needs•of•the•intended•application,•the•budget•
is•not•overrun,•and•the•system•is•delivered•on•time.•To•accomplish•these•goals,•the•
term•“software•engineering”•was•proposed•at•a•NATO•conference•in•1968•to•advocate•
the•need• for•an•engineering•approach• to•software•production.•Since• then,•software•
engineering•has•become•a•discipline•and•made•remarkable•progress.•The•efforts•that•
take•place•in•the•field•lead•to•the•following:

Definition 1.1 Software engineering as• a• discipline• is• focused• on• the• research,•
education,• and• practice• of• engineering• processes,• methods,• and• techniques• to•
significantly• increase• software• productivity• and• software• quality• while• reducing•
software•costs•and•time•to•market.

This•definition•includes•several•important•points.•First,•the•overall•objective•of•
software•engineering•is•significantly•increasing•software•productivity•(P)•and•quality•
(Q)•while•reducing•software•production•and•operating•costs•(C)•as•well•as• time•to•
market•(T).•These•are•abbreviated•as•PQCT•in•this•book.•In•other•words,•significantly•
improving•PQCT•means•producing•higher-quality•software•more•quickly,•efficiently,•
and•cost-effectively.•These•will•eventually•contribute•to•the•improvement•of•our•lives.•
Second,• research,•education,•and•practice•of• software•engineering•processes,•meth-
ods,•and•techniques•are•the•means•to•significantly•improve•PQCT.

Software•development•involves•three•tracks•of•interweaving•activities,•as•Figure•1.1•
exhibits.•These•activities•take•place•simultaneously•throughout•the•software•life•cycle:

1.	 Software•development•activities.
2.	 Software•quality•assurance•activities.
3.	 Software•project•management•activities.

Software•development•activities•are•a•set•of•activities•performed•to•transform•
an•initial•system•concept•into•a•software•system•running•in•the•target•environment.•
Like•many•engineering•projects,• software•development•activities• include• software•

kun21701_ch01_001-009.indd 3 28/11/22 5:23 PM

4 Part I Introduction and System Engineering

specification,• software• design,• implementation,• testing,• deployment,• and• mainte-
nance.•Software•specification•determines•what•the•customer•and•users•want.•These•
are•specified•as•requirements•or•capabilities•that•the•software•system•must•deliver.•
Software•design•produces•a•software•solution•to•realize•the•software•requirements.•
In•particular,•it•determines•the•overall•software•structure,•called•the•software•archi-
tecture,•of•the•software•system.•The•architecture•depicts•the•major•system•compo-
nents•and•how•they•relate,•interface,•and•interact•with•each•other.•Software•design•
also•defines•the•user•interfaces•as•well•as•high-level•algorithms•for•the•system•com-
ponents.•During•implementation•and•testing,•the•design•is•converted•into•computer•
programs,• which• are• tested• to• ensure• that• they• work• as• the• customer• and• users•
expect.•The•software•system•is•then•installed•in•the•target•environment,•tested•and•
modified•to•ensure•that•it•works•properly.•During•the•maintenance•phase,•the•soft-
ware• system• is• continually• modified• to• correct• errors• and• enhance• functionality•
until•it•is•abandoned•or•replaced.

Software• quality• assurance• (QA)• activities• are• carried• out• alongside• the• de-
velopment•activities.•QA•activities•ensure• that• the•development•activities•are•car-
ried•out•correctly;•the•required•artifacts,•such•as•software•requirements•document•
(SRD)•and•software•design•document•(SDD),•are•produced•and•conform•to•quality•
standards;•and•the•software•system•will•fulfill•the•requirements.•These•are•accom-
plished•through•requirements•review,•design•review,•code•review•and•inspection,•as•
well•as•testing.

Software•project•management• activities• ensure• that• the• software• system•under•
development•will•be•delivered•on•time•and•within•budget•constraint.•One•important•
activity•of•project•management•is•project•planning.•It•takes•place•at•the•beginning•of•
a•project,•immediately•after•the•requirements•for•the•software•system•are•determined.•
In•particular,•effort•and•time•required•to•perform•the•three•tracks•of•activities•for•the•
project•are•estimated.•A•schedule•of•activities•is•produced•to•guide•the•project.•During•
the•development•and•deployment•process,•project•management•is•responsible•for•con-
tinuous•monitoring•of•project•progress•and•costs,•and•executing•necessary•actions•to•
adapt•the•project•to•emerging•situations.

FIGURE 1.1 Three tracks of life-cycle activities

Software quality assurance activities

Software project management activities
Cost & time
to market

Quality

Productivity Software development activities

kun21701_ch01_001-009.indd 4 28/11/22 5:23 PM

Chapter 1 Introduction 5

1.2 WHY SOFTWARE ENGINEERING?

First,•software•is•used•in•all•sectors•of•our•society.•Companies•rely•on•software•to•run•
and•expand•their•businesses.•Airplanes,•vehicles,•medical•equipment,•and•numerous•
other• machines• and• devices• rely• on• software• to• operate.• Internet• of• Things• (IoT),•
cloud•computing,•and•AI•applications•also•heavily•rely•on•software.•Software•systems•
are•getting•much•larger,•extremely•complex,•and•highly•distributed.•Today,•it•is•com-
mon•to•develop•systems•that•contain•millions•of•lines•of•code.•For•example,•the•F35•
fighter• runs•on•8•million• lines•of•code,•Microsoft’s•Windows•operating•system•has•
about•50•million•lines•of•code,•and•Google•Search•plus•Gmail•plus•Google•Maps•con-
sist•of•2•billion•lines•of•code.•For•many•embedded•systems,•which•consist•of•hardware•
and•software,• the•software•cost•has• increased• to•90%–95%•of• the• total• system•cost•
from•5%–10%• three•decades• ago.•Some•embedded• systems•use• application-specific•
integrated•circuits•(ASIC),•system•on•chip•(SoC),•and/or•firmware.•These•are• inte-
grated•circuits•with•the•software•burned•into•the•hardware.•They•are•costly•to•replace;•
hence,• the•quality• of• the• software• is• critical.•These• call• for• a• software• engineering•
approach•to•system•development.

Second,•software•engineering•supports•teamwork,•which•is•needed•for•large•sys-
tem•development.•Large•software•systems•require•considerable•effort•to•design,•imple-
ment,•test,•and•maintain.•A•typical•software•engineer•can•produce•on•an•average•50–100••
lines• of• source• code• per• day.• This• includes• the• time• required• to• perform• analysis,•
design,•implementation,•integration,•and•testing.•Thus,•a•small•system•of•10,000•lines•
of•code•would•require•one•software•engineer•to•work•between•100•and•200•days•or••
5–10•months.•A•medium-sized•system•of•500,000•lines•of•source•code•would•require•
a•software•engineer•to•work•5,000–10,000•days,•or•20–40•years.•It•is•not•acceptable•
for• any• business• to• wait• this• long.• Therefore,• real-world• software• systems• must• be•
designed•and•implemented•by•a•team•or•teams•of•software•engineers.•For•example,•a•
medium-sized•software•system•requires•20–40•software•engineers•to•work•for•one•year.•
When•two•or•more•software•engineers•work•together•to•develop•a•software•system,•
they•face•serious•conceptualization,•communication,•and•coordination•challenges.

Conceptualization•is•the•process•of•observing•and•classifying•real-world•phenom-
ena•to•form•a•mental•model•to•help•understand•the•application•for•which•the•system•
is•built.•Conceptualization•is•a•challenge•for•teamwork•because•the•software•engineers•
may•perceive•the•world•differently•due•to•differences•in•their•education,•cultural•back-
grounds,•career•experiences,•assumptions,•and•other•factors.•The•parable•of•the•blind•
men•and•an•elephant•explains•this.•We•as•software•developers•are•like•the•four•blind•
men•trying•to•perceive•or•understand•an•application.•If•the•team•members•perceive•
the•application• incorrectly,• then•how•can• they•produce•software• that•will• correctly•
automate•the•application?•If•the•team•members•have•different•perceptions,•then•how•
can•they•design•and• implement•software•components• that•will•work•with•each•oth-
er?•Software•engineering•provides•modeling•languages•such•as•the•Unified•Modeling•
Language•(UML),•methods•and•techniques•to•help•developers•establish•a•common•
understanding•about•an•application•for•which•the•software•is•built.

When•a•team•of•software•engineers•works•together,•they•need•to•communicate•
their• analysis• and•design• ideas.•However,• the•natural• language• is• too• informal• and•

kun21701_ch01_001-009.indd 5 28/11/22 5:23 PM

6 Part I Introduction and System Engineering

sometimes•ambiguous.•Again,•UML•improves•the•communication•among•the•develop-
ers.•Finally,•when•teams•of•software•engineers•work•together,•how•can•they•collaborate•
and•coordinate•their•efforts?•For•example,•how•do•they•divide•the•work•and•assign•
the•pieces•to•the•teams•and•team•members?•How•do•they•integrate•the•components•
designed•and•implemented•by•different•teams•and•team•members?•Software•engineer-
ing•provides•a•solution.•That•is,•software•development•processes•and•methodologies,•
software•project•management,•and•QA•solve•these•problems.

1.3 SOFTWARE ENGINEERING ETHICS

Software•is•present•everywhere•in•our•society,•and•controls•and•affects•every•aspect•
of•our•lives.•Software•can•do•good•or•cause•harm•to•our•society•or•others.•Therefore,•
software•engineers•must•consider•social•and•ethical•responsibilities•when•designing,•
implementing,• and• testing• software.• In• this• regard,• the• ACM/IEEE-CS• Joint• Task•
Force•on•Software•Engineering•Ethics•and•Professional•Practices•recommended•the•
“Software•Engineering•Code•of•Ethics•and•Professional•Practice”•(Figure•1.2)•as•the•
standards•for•teaching•and•practicing•software•engineering.

Software•engineers•should•adhere•to•these•ethical•standards•in•their•profession-
al•practice•as•well•as•daily•lives.•For•example,•a•software•engineer•must•respect•the•
confidentiality•of•the•client•or•employer.•A•software•engineer•must•also•respect•and•
protect•the•intellectual•property•of•the•client•or•employer.•Sometimes,•a•software•en-
gineer•must• choose•one•act•or• another.•For• example,• a• software• engineer•happens•

FIGURE 1.2 The ACM/IEEE code of ethics

Source: https://ethics.acm.org/code-of-ethics/software-engineering-code/

Software Engineering Code of Ethics and Professional Practice (Short Version)

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details form a cohesive code.
Software engineers shall commit themselves to making the analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession. In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the following Eight Principles:
1. PUBLIC—Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the best interests of their client and
employer consistent with the public interest.
3. PRODUCT—Software engineers shall ensure that their products and related modifications meet the highest professional
standards possible.
4. JUDGMENT—Software engineers shall maintain integrity and independence in their professional judgment.
5. MANAGEMENT—Software engineering managers and leaders shall subscribe to and promote an ethical approach to the
management of software development and maintenance.
6. PROFESSION—Software engineers shall advance the integrity and reputation of the profession consistent with the public
interest.
7. COLLEAGUES—Software engineers shall be fair to and supportive of their colleagues.
8. SELF—Software engineers shall participate in lifelong learning regarding the practice of their profession and shall promote
an ethical approach to the practice of the profession.

kun21701_ch01_001-009.indd 6 28/11/22 5:23 PM

Chapter 1 Introduction 7

to•know•that•a•component•may•behave•abruptly•in•rare•circumstances,•which•might•
cause•property• damage•or• loss• of• lives.•He• also• knows• that• his• company•wants• to•
release•the•product•quickly•to•gain•back•market•share.•If•he•reports•the•problem,•then•
the•release•has•to•push•back•considerably,•and•he•would•become•the•“trouble•maker.”•
If•he•does•not•report,•then•devastating•tragedy•might•happen.•Such•a•hypothetic•sce-
nario•has•actually•occurred•again•and•again•in•our•industry.•Management•persons•also•
have•to•choose•between•right•and•wrong.•If•the•software•engineer•reports•the•problem,•
would•the•management•take•it•seriously?•As•a•matter•of•fact,•wrong•doings•pay•big•
prices—companies•were•ordered•to•pay•hefty•fines,•and•individuals•were•jailed•for•their•
wrong•acts.

Ethical•dilemmas•can•occur•in•our•daily•lives.•A•college•student•had•a•job•inter-
view•soon,•but•unfortunately•his•laptop•broke.•He•wanted•to•borrow•his•girlfriend’s•
laptop•for•the•weekend•to•prepare•for•the•interview,•but•the•laptop•belonged•to•her•
company.•In•this•case,•should•she•lend•the•laptop•to•her•boyfriend,•or•not•help•when•
he•needs•the•help?•What•would•you•think•his•girlfriend•should•do?

1.4 SOFTWARE ENGINEERING AND COMPUTER SCIENCE

What• is• the• difference• between• software• engineering• and• computer• science?• This•
question•is•often•asked•by•students•and•working•professionals.•First•of•all,•computer•
science• emphasizes• computational• efficiency,• resource• sharing,• accuracy,•optimiza-
tion,•and•performance.•These•can•be•measured•accurately•and•relatively•quickly.•In•
the•last•several•decades•(i.e.,•from•1950•to•the•present),•all•efforts•and•resources•spent•
in•computer•science•research•are•aimed•to•improve•these•aspects.•Most•chapters•of•a•
computer•science•textbook•are•written•about•methods,•algorithms,•and•techniques•to•
improve•or•optimize•these•aspects.

Unlike•computer•science,•software•engineering•emphasizes•software•PQCT.•For•
example,•obtaining•an•optimal•solution•is•often•the•goal•of•computer•science.•Software•
engineering•would•use•a•good-enough•solution•to•reduce•development•or•maintenance•
time•and•costs.•Efforts•and•resources•spent•in•software•engineering•R&D•are•aimed•
at•significantly• improving•software•PQCT.•Most•chapters•of•a•software•engineering•
textbook•are•written• about•methods• and• techniques• to• improve• these• four• aspects.•
Unfortunately,•the•impact•of•a•software•engineering•process•or•methodology•cannot•
be•measured•easily•and•immediately.•To•be•meaningful,•the•impact•must•be•assessed•
during•a• long•period•of• time•and•consume• tremendous•resources.•For•example,• re-
searchers•took•more•than•one•decade•to•realize•that•the•uncontrolled•goto•statement•
is•harmful.•That•is,•the•uncontrolled•use•of•the•goto•statement•results•in•poorly•struc-
tured•programs,•which•are•difficult•to•understand,•test,•and•maintain.

Computer•science• focuses•only•on• technical•aspects.•Software•engineering•has•
to•deal•with•nontechnical• issues.•For•example,• the•early• stages•of• the•development•
process•focus•on•identifying•business•needs•and•formulating•requirements•and•con-
straints.•These•activities•require•domain•knowledge,•analysis•and•design•experience,•
communication• skill,• and• customer• relations.• Software• engineering• also• requires•
knowledge•and•experience•in•project•management.•User•interface•design•has•to•con-
sider•human• factors• such• as• user• preference• and•how•users•would•use• the• system.••

kun21701_ch01_001-009.indd 7 28/11/22 5:23 PM

8 Part I Introduction and System Engineering

In•addition,•software•development•must•consider•political•issues•because•the•system•
may•affect•many•people•in•one•way•or•another.

Recognizing•the•differences•between•software•engineering•and•computer•science•
could•help•in•understanding•and•appreciating•software•engineering•processes,•meth-
odologies,•and•principles.•Consider,•for•example,•the•design•of•a•software•system•that•
needs•to•access•a•database.•Computer•science•might•emphasize•efficient•data•storage•
and•retrieval,•and•favor•a•design•in•which•the•program•accesses•the•database•directly.•
Such•a•design•would•make•the•program•sensitive•to•changes•to•the•database•design•
and•database•management• system•(DBMS).• If• the•database• schema•or• the•DBMS•
is•changed•or•replaced,•then•considerable•changes•have•to•be•made•to•the•program.•
This•could•be•difficult•and•costly.•Therefore,•software•engineering•would•not•consider•
this•a•good•design•decision•unless•efficient•database•access•is•highly•desired.•Instead,•
software•engineering•would•prefer•a•design•that•will•minimize•the•impact•of•database•
change•to•reduce•maintenance•effort,•costs,•and•time.

Despite•the•differences,•software•engineering•and•computer•science•are•closely•
related.• Computer• science• to• software• engineering• is• like• physics• to• electrical• and•
electronics•engineering,•or•chemistry•to•chemical•engineering.•That•is,•computer•sci-
ence•is•a•theoretical•and•technological•foundation•for•software•engineering.•Software•
engineering•is•application•of•computer•science.•However,•software•engineering•has•its•
own•research•topics.•These•include•research•in•software•processes•and•methodologies,•
software•verification,•validation•and•testing•techniques,•among•others.

Software•engineering•is•a•broad•area.•A•software•engineer•should•know•areas•of•
computer•science•including•programming•languages,•algorithms•and•data•structures,•
operating•systems,•database•systems,•artificial•intelligence,•and•computer•networks,•to•
mention•a•few.•Embedded•systems•development•requires•the•software•engineer•to•have•
a•basic•understanding•of•electronic•circuits•and•how•to•interface•with•hardware•devic-
es.•Finally,•it•takes•time•for•a•software•engineer•to•gain•domain•knowledge•and•design•
experience•to•become•a•good•software•architect.•These•challenges•and•the•ability•to•
design•and•implement•large•complex•systems•to•meet•practical•needs•make•software•
engineering•an•exciting•area.•The•ever-expanding•computer•application•creates•great•
opportunities•for•the•software•engineer•and•software•engineering•researcher.

1.5 SUMMARY

Software• engineering• is• defined• as• a• discipline• that•
investigates• and• applies• engineering• processes• and•
methodologies•to•improve•software•PQCT.•The•need•
for• software• engineering• is• discussed,• and• software•
life-cycle• activities• are• described.• The• chapter• ends•
with•a•discussion•of•software•engineering•ethics•and•
relationship•between•computer•science•and•software•
engineering.•That•is,•computer•science•is•a•foundation•

for•software•engineering.•While•computer•science•is•
mainly• concerned•with•optimization•and• efficiency,•
software• engineering• is• concerned• with• software•
PQCT.•Knowing• these•should•help•understand•soft-
ware• engineering• and• the• rationale• behind• the• pro-
cesses,• methodologies,• modeling• languages,• design•
patterns,•and•many•others.•All•these•are•designed•to•
improve•software•PQCT.

kun21701_ch01_001-009.indd 8 28/11/22 5:23 PM

Chapter 1 Introduction 9

1.6 CHAPTER REVIEW QUESTIONS

1.	 What•is•software•engineering?• Why•is•it•needed?

2.	 What•is•a•software•development•process?

3.	 What• is• software•quality•assurance?

4.	 What•is•software•project•management?

5.	 What• are• the• differences• and• relationship• between•
software• engineering• and•computer• science?•Can•we•
have•one•without•the•other?

1.7 EXERCISES

1.1	 Search•the•literature•and•find•four•other•definitions•
of•software•engineering•in•addition• to•the•one•given•
in•this•chapter.• Discuss•the•pros•and•cons•of•these•
definitions.

1.2	 A•number•of•methods•have•been•proposed•for•mea-
suring• software• productivity.• These• include• count-
ing•the•lines•of•source•code,•number•of•classes,•and•
number• of• methods• delivered.• Each• of• these• has•
drawbacks.• For• example,• each• line• of• a• program•
could•be•split•into•two•to•“double”•the•productivity•
although• the• functionality• of• the• program• has•not•
changed.•Discuss•the•pros•and•cons•of•each•of•these•
methods.

1.3	Describe•in•a•brief•article•the•functions•of•the•three•
tracks•of•life-cycle•activities.•Discuss•how• the• three•
tracks• of• activities• work• together• during• the• soft-
ware• development• life• cycle.• Discuss•how•they• im-
prove•software•PQCT.

1.4	 Should• optimization• be• a• focus• of• software• engi-
neering?• Briefly• explain,• and• justify• your• answer•
with•a•practical•example.

1.5	 Identify• three• computer• science• courses• of• your•
choice.•Show•the•usefulness•of•these•courses•in•the•
software•life-cycle•activities.

1.6	 There•are• interdependencies•between•software•pro-
ductivity,•quality,•cost,•and•time•to•market.•For•ex-
ample,•more•time•and•effort•spent•in•coding•could•
increase• productivity.• This• may• result• in• less• time•
and•effort•in•quality•assurance•because•the•total•time•
and•effort•of•a•project•are•fixed.•Poor•quality•could•
reduce• productivity• due• to• rework.• Identify• three•
pairs•of•such•interdependencies•of•your•choice.•Dis-
cuss•their•short-term•and•long-term•impacts•on•the•
software• development• organization.• How• should•
software•engineering•solve•this•“dilemma”•induced•
by•these•interdependencies?

1.7	 What•would•you•do• if• you•were• the• software•engi-
neer•described•in•Section•1.4?

1.8	 What•would•you•do•if•your•boy/girlfriend•desperately•
needs• to• use• your• laptop,• but• it• belongs• to• your•
company?

kun21701_ch01_001-009.indd 9 28/11/22 5:23 PM

